

DBN-003-1163005

Seat No.

M. Sc. (Sem. III) Examination

June - 2022

Mathematics: EMT - 3011

(Differential Geometry)

Faculty Code: 003

Subject Code: 1163005

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions:

- (1) Attempt any **five** questions from the following.
- (2) There are total **ten** questions.
- (3) Each question carries equal marks

1 Attempt the following:

14

- (1) Define with example: Regular curve.
- (2) Define: ε neighborhood in \mathbb{R}^2 .
- (3) Find curvature and torsion of the circle $2x^2 + 2y^2 12x 12y 36 = 0$.
- (4) Define with examples: Functions of class k.
- (5) Define: Tangent vector field.
- (6) Define: Length of a regular curve segment.
- (7) Define: Unit speed curve.

2 Attempt the following:

14

- (1) Find the curvature and torsion of the curves
 - (i) 5x + 2y = 0 and (ii) $x^2 + y^2 = 4$.
- (2) Define with example: Simple surface.
- (3) Define: The Osculating plane and the Rectifying plane. Also demonstrate them on a surface of an upper Hemisphere.

- (4) Is the curve $a(x) = (x^{100}, 2x + 7, 5x^2 + 3)$ is regular? Justify your answer.
- (5) Define: Normal curvature and Geodesic curvature.
- (6) Identify the curve $x \cos \alpha + y \sin \alpha = p$ and find its curvature and torsion.
- (7) Define: Velocity vector of a regular curve α .

3 Attempt the following:

- (a) Define tangent line to a curve. Show that the curve $\alpha(t) = (\sin 6t \cos t, \sin 6t \sin t, 0)$ is regular. Also find the equation of tangent line to α at the point $t = \frac{\pi}{6}$.
- (b) Show that the curve $\alpha(S) = \left(\frac{5}{13}\cos S, \frac{8}{13} \sin S, -\frac{12}{13}\cos S\right)$ is a unit speed curve. Also compute its curvature and torsion of the given curve.

4 Attempt the following:

- (a) Define reparametrization of a curve. If $g : [c, d] \rightarrow [a, b]$ is a reparametrization of a curve segment $\alpha : [a, b] \rightarrow R^3$ then prove that the length of α is equal to the length of $\beta = \alpha \circ g$. Also derive the relation between their tangent planes.
- (b) Define the arc length of a curve and prove that the arc length is one one function mapping (a, b) onto (c, d) and it is a reparametrization. Is the curve reparametrized by its arc length yield a unit speed curve? Justify your answer.

5 Attempt the following:

(a) Let $\alpha(s)$ be a unit speed curve whose image lies on a sphere of radius r and centre m then show that $k \neq 0$. Also if $\tau \neq 0$ then $\alpha - m = -\rho N - \rho' \sigma \beta$ and $r^2 = \rho^2 (\rho' \sigma)^2$ (where $\rho = \frac{1}{k}$ and $\sigma = \frac{1}{\tau}$). 14

14

14

- (b) Is the curve $\alpha(t) = (\sin t, \cos^2 t, \cos t)$ regular? If so then find the equation of tangent line at $t = \frac{\pi}{4}$.
- **6** Attempt the following:

14

- (a) Prove that: The set of all tangent vectors to a simple surface $x: u \to R^3$ at P is a vector space. Also find the dimension of that vector space.
- (b) Show that the length of the curve

 $\alpha(t) = \left(2\alpha\left(\sin^{-1}t + t\sqrt{1-t^2}\right), 2at^2, 4at\right)$ between the points $t = t_1$ to $t = t_2$ is $4a\sqrt{2}(t_2 - t_1)$. What will be the arc length between the points $t_1 = 25$ and $t_2 = 30$?

7 Attempt the following:

14

- (a) Define orthonormal vectors and prove that the set $\{T, N, B\}$ is orthonormal.
- (b) Find the arc lengths of the curves $\alpha(t) = (r \cos t, r \sin t, 0)$ and $\alpha(t) = (r \cos \omega s, r \sin \omega s, h \omega s)$. Also reparametrize them by their arc lengths.
- 8 Attempt the following:

14

(a) Show that a simple surface remains simple even after coordinate transformation.

3

(b) Prove in the usual notations the relation

$$g_{ij} = \sum g_{\alpha\beta} \frac{\partial v^{\alpha}}{\partial u^{i}} \frac{\partial v^{\beta}}{\partial u^{j}}.$$

- **9** Attempt the following:
 - a) Define Monge patch and compute coefficients of first and second fundamental form. Also find Christoffel symbols for the same.
 - (b) State and prove Frenet Serret theorem.
- 10 Attempt the following:

14

14

(a) Prove in the usual notations:

$$\Gamma_{ij}^{l} = \frac{1}{2} \sum_{k=1}^{2} g^{kl} \left(\frac{\partial g_{ik}}{\partial u^{j}} + \frac{\partial g_{kj}}{\partial u^{i}} - \frac{\partial g_{ij}}{\partial u^{k}} \right)$$

(b) Prove that: A necessary and sufficient condition for a curve to be a straight line is that the curvature K=0.

DBN-003-1163005]